
Separate Compilation for Standard ML

David Swasey, Tom Murphy VII, Karl Crary, Robert Harper
Carnegie Mellon University

October 30, 2005

Abstract

This is a proposal for an extension to the Standard ML programming
language for programming “in the large.” The extension allows the pro-
grammer to write a program broken into multiple fragments in way that
would be compatible between different implementations. It also allows for
the separate compilation of these fragments and for incremental recompi-
lation strategies such as cut-off recompilation. We specify the language
with an abstract, formal definition, parameterized over the two popular
definitions of Standard ML: The 1997 Definition and the Harper-Stone
interpretation.

1 Introduction

This document proposes a language extension of Standard ML to support sepa-
rate compilation, the ability to divide a program into meaningful subparts that
can be compiled in isolation and later linked to form a complete program. We
support the cleaving of any ML program between two top-level declarations.
Such a fragment is known as a “unit,” which we give a unique name with global
scope. Because these units are open code (they depend on the preceding code
for typing and evaluation context), they do not make sense in isolation. The
concept of an “assembly” is a collection of units with enough context to make
them individually meaningful. Context for a unit is provided by “opening”
other units. A unit can open another unit from two sources. First, it can open
a unit that appears earlier in the same assembly. In this case, the interface for
the opened unit can be computed by compiling the opened unit first. Second,
a unit can be opened from another assembly. In this case, since the assem-
bly must make sense on its own, this external dependency must be mediated
by an interface that the programmer specifies. The first kind of open permits
smooth scaling from existing SML code bases. Providing interfaces supports
more flexible development patterns and permits parallel and cut-off compila-
tion implementation strategies.

The language, if adopted, would allow for source-level compatibility of li-
braries and large programs between different implementations. Moreover, as a

1

language rather than a tool, we are able to give a formal semantics to the exten-
sion that allows the programmer to understand his program’s meaning in the
abstract. It also allows implementors to have a robust way of answering ques-
tions such as, “when do certain changes to source files require recompilation of
dependencies?”

The Standard ML language has two popular definitions. First is the Defi-
nition of Standard ML [MTHM97], published in 1997, whose semantics is given
in terms of “semantic objects” (finite maps and sets). Most implementations
use this definition. Harper and Stone also defined Standard ML via elaboration
into a type-theoretic internal language, given in A Type-Theoretic Interpreta-
tion of Standard ML [HS00]. A few implementations, notably TILT [TIL05], use
this semantics. The majority of real programs have the same meaning in both
definitions. Because of these two different definitions, the language extension
presented here is modularly defined in terms of a parsimonious interface to the
underlying semantics. We give implementations of this interface for both the
Definition (Appendix I) and Harper-Stone (Appendix H). Another consequence
of this setup is that the separate compilation system is isolated from the lan-
guage to the degree that it could be a starting point for extensions to languages
other than SML.

1.1 Separate Compilation and Incremental Recompilation

Describing programs in the proposed language allows the resolution of compi-
lation to be increased in two ways. We call these separate compilation and
incremental recompilation.

Separate compilation is the practice of compiling assemblies (collections of
units) in isolation. Because external dependencies must have their interfaces
specified completely, an assembly is self-contained and the units within it can
be compiled without the external dependencies present. Separate compilation
allows programs to be developed in parallel pieces and then linked together at
a later time.

The units in an assembly also permit incremental recompilation. Because
a given program is often compiled many times, it is advantageous to have the
compiler re-use the results of previous compilations whenever possible. One
simple kind of recompilation avoids recompiling a unit whose dependencies have
not changed since the previous compile. This notion of “have not changed” can
be relaxed in order to permit reuse in more circumstances. For instance, if the
programmer specifies an interface for a unit, then changes to that unit need not
cause recompilation of units that open it.

As an abstract language specification, this document does not define how
compilation and linking are performed; this varies widely between implemen-
tations. Instead we define the conditions under which a unit compiles and
program links, and the meaning of a linked executable (its dynamic seman-
tics). This makes it possible for implementors to reason about their imple-
mentations with respect to a definition, and to state and prove the correctness

2

of their optimizations. (Indeed, the correctness of these optimizations is not
trivial [WDE98, DWE98].)

Though the implementation of separate compilation and incremental recom-
pilation is not part of the language proposal, part of the motivation for this
language is to support these features in real compiler tools. Section 3 thus ex-
plains in more detail what compilation and linking might consist of for various
ML implementation strategies. In Section 3.1 we additionally explain how TILT
implements these features and how they behave from the user’s perspective.

1.2 Design Decisions

Based on the number of different separate compilation systems for various SML
implementations (and related languages such as O’Caml), it is safe to say that
the space of possible designs is large. In this section we justify the design
decisions made for our particular system.

Language-based. First and foremost, the design should be a language rather
than a tool. By language, we mean a description of a set of valid programs, each
of which is assigned a meaning. This definition should be formal and unambigu-
ous. In particular, we wish to avoid the common situation where the description
of the language is really documentation of a reference implementation.

Language-based solutions have many advantages. They give implementors
an official answer to subtle questions, leading to a high degree of compatibility.
They make it possible to reason abstractly about the system, which means that
both the language implementors and language users can have confidence in their
programs.

Environment independence. In keeping with our language-based design
philosophy, the design must be isolated from its environment. For example,
many project description languages force a unit to be stored in a file based on
the name of the unit. Aside from making it more difficult to formally specify the
language (as the specification would have to explain, say, the Posix filesystem),
it may also make the language unimplementable. For instance, /// is a valid
structure identifier in SML, but not a valid Posix filename; case sensitivity differs
between filesystems on popular platforms; and on Windows, it is impossible to
create files with a base name of con, aux, and others. Though our system of
course allows for units to be stored in files, it is the tool (compiler) implementing
the language that mediates between the environment and the abstract language
definition.

Completeness. We wish to allow an SML program to be cleaved into units
between any two top-level declarations. This means that an interface should
be able to describe any kind of kind of top-level binding in SML. Moreover,
a unit should not be artificially restricted to contain exactly one declaration.
This implies that we should not identify the concept of “unit” with that of SML

3

structures, as is done in O’Caml. If we did so, then top-level value declarations,
such as the ones required by the Standard Basis Library, could not be separately
compiled against, for instance. Identifying units and structures in SML is even
more untenable than it is in O’Caml—because SML does not allow functors or
signatures inside structures, it would make it impossible to separately compile
functors and signatures at all!

An unfortunate fact of Standard ML is that some structure expressions have
no most general signature that can be written by the programmer (a consequence
of the avoidance problem [GP92]). This means that some units cannot be as-
cribed an accurate interface by the programmer. For programs that incorporate
such units, we can only obtain the appropriate context for the compilation of
the rest of the program by compiling these units from source. This means that
they must be part of the same assembly; in the terminology from Section 1.1,
such units can be incrementally recompiled against but not separately compiled.
As a consequence, our design must permit the omission of interfaces in order
to accept all existing programs in a non-degenerate way. In practice however,
instances of this problem are rare.

Simplicity. Although there is constant tension to add features of convenience
or research interest to the project system, we strive for the simplest possible
design. This is for several reasons. To encourage adoption, we want the project
description language to be easy to implement. To encourage use by program-
mers, we want it to be useful but easy to understand. As a system that does the
minimum required, it can serve as a common starting point for implementation-
specific extensions. For example, we do not propose a standard mechanism for
environment variables, conditional compilation, or compiler directives, leaving
this for future work.

Conservativity. Along with the extension itself being simple, it should not
affect the core or module languages in any substantial way. This precludes
for instance “forward references” in assemblies, which would allow recursive
dependencies that are not otherwise expressible in the language.

Automatic dependency analysis. We do not support automatic depen-
dency analysis as is done in SML/NJ’s Compilation Manager. For one, this
would violate our desire for simplicity. It also would probably mean violating
completeness, as dependency analysis systems like SML/NJ’s generally make
restrictions on the programs to exclude multiple top-level declarations with the
same name, or even top-level declarations other than structure, functor, and
signature bindings. Furthermore, these systems pose problems for language-
based approaches in that they are too ambiguous: Dependencies on the order of
effects are not at all evident from source code, so a program may have multiple
legal topological sortings with different meaning. In contrast, our language is
entirely unambiguous; assemblies have at most one meaning, and the order of
unit evaluation is the same as the order they appear in the description.

4

Despite this, our language provides an appropriate target for the output of
dependency analysis tools, and such tools are probably of substantial use.

Definite references. Our proposal is based on the idea that unit names are
unique within a program; each is a definite reference to exactly one unit im-
plementation. This is in contrast to functor arguments (for instance), which
may have multiple instantiations, or structure bindings, which may shadow one
another. The requirement for definite references is a necessary consequence of
compiling code with free references [HP05]. The use of definite references also
means that our formalism is much simpler than the type theory of modules. For
example, use of our system does not introduce any sharing constraints what-
soever. Definite references also make implementation simpler: For instance,
TILT mangles each unit identifier and simply uses Unix’s ld to link separately
compiled code.

The remainder of this document proceeds as follows. First, we give a high-
level summary of the concepts and features of our proposal. Then, we walk
through the abstract specification, with pointers into the interesting parts of
the formalism (Section 2). The details of the Harper-Stone and Definition im-
plementations are relegated to their own appendices (A and B). Programmers
who prefer to see concrete syntax and code examples may wish to skip Section 2
entirely.

After the technical walkthrough, we discuss the different possible notions
of compilation and linking for the wide variety of SML implementations (Sec-
tion 3), followed by a brief tour of our implementation with examples. Section 4
discusses the concrete syntax and some issues of parsing. The bulk of the pro-
posal is the formal specification of the language extension, which makes up the
remainder (Appendices C–I).

1.3 Units, Interfaces, Assemblies, and Linking

For our proposal we introduce four new entities atop SML: units, interfaces,
assemblies, and programs. Units and interfaces have already been discussed;
these are the individual pieces of code that are compiled, and their descriptions
for the purpose compiling in the absence of the implementation. Assemblies are
the particles of linking. They consist of a series of interface and unit declarations.
A collection of assemblies (called a program) can be linked together to form
another assembly. A “complete” assembly can be made into a final executable.

These additional levels are not burdensome: Any existing SML program can
be compiled by making it into a single unit inside a degenerate assembly consist-
ing only of that unit, which will already be “complete.” (However, most existing
SML programs have a natural division into units based on the organization of
code into files.)

Every unit declaration declares a unit identifier to have an interface (either
implicit or explicit). This is used for checking and compiling the remainder
of the assembly. A unit declaration may also provide an implementation for

5

A

C

Figure 1: An example program being linked. The letters are unit names. Filled
boxes correspond to unit declarations with implementations. The arrows repre-
sent the list of opened units (only units with implementations may open others).
In the first step, three separate assemblies can be separately developed and the
constituent units separately compiled. We can partially link assemblies 2 and 3
to give us a fourth assembly. This assembly still has unimplemented units, so
it cannot be made into an executable yet. Linking it with assembly 1, however,
resolves all of these dependencies and so an executable can be produced.

that unit. If it does not, then the declaration is an external dependency to be
provided by another assembly during linking. Because each unit identifier is
globally unique (a definite reference), we are able to make consistent reference
to it in multiple assemblies, and ensure that all uses are talking about the same
actual implementation. In a complete assembly, exactly one implementation for
each unit must be provided. In order to link assemblies together, where one
assembly implements a unit used to satisfy dependencies in other assemblies,
all of the interfaces assigned to the unit must be equivalent.

Every unit (with implementation) declaration that relies on other units must
make this list explicit by “opening” the units. The contents of these units
are then available within the opening unit without qualification. Interfaces
also specify an open list in the same way; note that in Standard ML, we have
dependencies of interfaces on implementations, which is not the case for many
other languages.

An example illustrating the linking of a few simple assemblies is given in
Figure 1.

The order of units in an assembly is important. Only units declared earlier
in the same assembly can be opened, to avoid recursive dependencies. The order
that unit implementations appear is the order that their offects occur in the final
completed program. Because this order matters, linking is also an asymmetric
process: Linking assemblies 2 and 3 is successful in Figure 1, but linking units
3 and 2 would not be.

6

unit A collection of SML top-level declarations
with free references. Not generally mean-
ingful without context

interface Describes a unit; may also have free ref-
erences to other units

assembly Collection of units and interfaces that is
individually meaningful. Refers to exter-
nal units by giving their interfaces

open list Explicit list of the units that a unit or
interface depends on

EL The external language for assemblies; the
abstract syntax of what the programmer
writes

IL The internal language for assemblies
elaboration Type-checking and transformation from

EL to IL
linking Creation of a single assembly from a series

of assemblies
program List of assemblies to be linked
completion Finalization of an assembly that has no

unimplemented units

Figure 2: A glossary of terms used in this proposal.

7

2 Technical Overview

This section discusses the technical details of the proposal. A glossary of terms
is given in Figure 2 to serve as a reminder. The formalism given in Appen-
dices C–I “speaks for itself,” so we only cover the salient features in the English
description. Also, we only describe the common interface to the two definitions
here; the individual details of those are found in the appendix (A and B).

The separate compilation system is given in terms of two languages, an
external language (EL) and an internal language (IL), the latter of which is
parameterized on the underlying formalism (Harper-Stone or the Definition). A
process of elaboration translates from EL to IL, type-checking the assembly as
it does. Linking and evaluation are defined in terms of these IL phrases.

External Language. The EL is what the programmer writes down to de-
scribe an assembly. The abstract syntax is given in Table 3 (the concrete syntax
is described in section 1). This includes the entire syntax of SML, used to form
a unit implementation.

Here is a very simple example of an abstract assembly:

interface QUEUE =
open in
(structure Queue :

sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a queue

end)

unit Q : QUEUE

unit C =
open Q in
(val q = Queue.empty
val q’ = Queue.push (0, q))

The first line of the assembly binds the interface identifier QUEUE to an inter-
face expression for a unit containing a structure Queue. An interface expression
is a series of topspecs, which are anything that can appear in a signature, along
with specs for functors and signature declarations. The next line declares the
unit Q to have interface QUEUE but does not specify an implementation. Because
the implementation of Q is not provided, the assembly is incomplete and can-
not be linked into an executable alone. However, the declaration of Q makes it
possible for the unit C to open it, and use it according to the interface supplied.

Here, the unit C is checked in a context with a single structure binding Queue.
A unit B opening A achieves two things: in addition to making the bindings from
A available to B, it indicates to the linking process that whenever B is linked into

8

a program, A must also be linked. This is true even if B does not actually make
use of A, perhaps because it relies only on top-level effects that A causes.

The declaration of unit C does not specify an interface, so the most general
one is computed from the implementation. However, a declaration with no
implementation (like the declaration of Q) must specify an interface, because
there is no implementation from which to glean it.

Because interfaces can also depend on units (for their type components),
an interface expression can additionally open units in the same manner. Here,
QUEUE opens nothing.

These are essentially all of the features of the external language—the full
abstract syntax is given in Table 3. An assembly is checked for well-formedness
during the process of elaboration, which transforms EL code into IL code (or
rejects the code as ill-formed).

Internal Language. The IL, whose syntax is given in Table 6, is even simpler
than the EL. The main complication is that, because we support two different
formalisms for the SML core, the IL is parameterized by a few syntactic classes
and judgments. These appear in Table 5. For the syntax, the relevant param-
eters are the syntactic categories for compiled units and interfaces, impl and
intf . Our previous example translates loosely into:

unit Q :
(structure Queue :

sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a queue

end)

unit C :
(val q : int Q.Queue.queue
val q’ : int Q.Queue.queue) =

require Q in
(val q = Q.Queue.empty
val q’ = Q.Queue.push (0, q))

The main changes from the EL are as follows: First, we simply use interface
expressions in place rather than naming them. Second, every unit declaration
now comes explicitly with its interface. Since the declaration of C did not spec-
ify one in the EL example, the most general interface is computed as part of
elaboration.

Unfortunately, the example given is neither here nor there; the code in paren-
theses would be the elaborated SML code and interfaces, whose format is de-
termined by the parameter to the IL. For the loose example we simply did not
carry out any compilation. Here, we have mimicked the Harper-Stone version in
that we have made all references to other units via their unit identifiers (rather

9

than implicitly as a result of being opened). The appearance of Q in the require
clause for C simply records the fact that we did open Q in the EL. This will
prevent us from discarding Q, which may be needed for its effects, even if it is
not referenced in C.

Given the parameters, which tell us how to check and use IL units and
interfaces, type-checking an IL assembly is straightforward. The entry point is
the judgment pdecs ` assm ok. pdecs is a context of unit identifiers and their
interfaces. To check an assembly, we simply check each unit in sequence, given
the pdecs produced by earlier unit declarations (Rules D.1.2 and D.1.3).

Elaboration. Elaboration produces an IL assembly from an EL assembly.
This process is also parameterized by some operations from the underlying for-
malism, which are given in Table 10. The parameters are as follows: First, we
need an interface for the top-level basis that can be assumed by every SML pro-
gram (it defines types like int and exceptions like Match, among other things).
This unit will be implicitly included in every assembly and opened for every
unit. We also need a way to elaborate SML code (a unit) in some context,
generating code and an interface for that code. We need to be able to compile
EL interfaces to IL interfaces. Because the language gives the ability to seal
units by ascribing interfaces to them, we additionally require an ascription op-
eration that checks an IL unit against an IL interface and generates a new unit
at that interface. (The new unit may discard components or hold certain types
abstract, etc., so the code is in general different.)

In order to elaborate, we use an elaboration context E representing the unit
and interface declarations that have been processed so far (Table 11).

The judgments in Table 12 describe the various steps in elaboration, with
E ` assembly assm, the elaboration of entire assemblies, being the entry
point.

For the most part, elaboration is a straightforward application of the param-
eters for elaborating units and interfaces. These themselves are unsurprising;
see Sections H.2 and I.2 for the details.

Linking. A collection of assemblies, which we call a program, can be linked
to form another assembly or a finished executable expression.

A program consists of a series of require and select directives. In an im-
plementation, these would likely be given as command line arguments to the
compiler. The require directive specifies that all the constituent units must be
included in the linked result. The select directive allows for selective linking, so
that only units from the assembly that are actually required by the rest of the
program are included. The order of these directives in a program is important,
and specifies the order of effects for the included units.

The linker is parameterized, as before (Table 14). We require a class of
executable programs prog, and a judgment of their well-formedness. We also
need to be able to query a unit or interface to see if it depends on a specific unit
(to implement selective linking). Finally, given an assembly with no unresolved

10

dependencies (except for the basis unit), a parameter ` assm prog tells us
how to convert this into an executable prog. This process is called completion.

The most interesting rules are the ones that carry out the require and select
directives (Judgment F.2). These process each individual unit in an assembly
in series. When we see a unit the first time in a require (Rule F.2.29), we
simply include it in the resulting assembly. This first appearance may have an
implementation; if it does not, then the resulting assembly will have unresolved
dependencies and so cannot be completed without further linking. Subsequent
occurrences (Rule F.2.30) must not have implementations. This is because each
unit should have at most one implementation, and because we do not allow
“forward references.” For these occurrences, we simply check that the declared
interface matches the existing one and continue.

The select directive is very similar. For the initial occurrence of a unit, the
rule is split into two cases (Rules F.2.32 and F.2.33), based on whether the rest
of the program uses the unit or not. If it is not used, then it is not included in
the linked program. A program should contain at least one require directive, or
no units will be included in the link!

The other interesting thing about linking is completion. An assembly is
complete if it has no unresolved dependencies—unit declarations without an
implementation—other than the basis unit. This is checked by the judgment
pdecs ` assm complete (Rules in F.5). The actual process of completion is en-
tirely up to the underlying formalism.

Evaluation. We have specified the conditions under which programs can
formed into executable expressions. The final step is to assign meaning to these
programs in the form of a dynamic semantics. A single parameter (Table 18)
` prog ⇒ res specifies the result of a program, which is either term (successful
termination) or raise (an uncaught exception). Here our attempt to give a single
account of both the Definition and Harper-Stone falls somewhat flat: of course,
the meaning of a program should be more than just this single bit of informa-
tion, and moreover, many programs of interest do not fall into either category
(because they do not terminate).

The problem has two sources: First, the Definition and Harper-Stone have
entirely different notions of the results of evaluation, which makes comparing the
abstract outcome of running a program quite difficult. Second, the Definition
uses a “big-step” semantics, which makes it impossible to state anything about
non-terminating programs.

To understand how evaluation works, it will be necessary to look at the
specific instantiations (Sections H.4 and I.4). For Harper-Stone, evaluation is
trivial (simply invoking the dynamic semantics on the linked expression), but
for the Definition we build a superstructure above the dynamic semantics in
order to maintain an environment of units.

11

3 Compilation and Linking in Practice

We have given an abstract language definition that uses words like “compila-
tion” and “linking,” but have not tied these to the traditional implementation
concepts of compilation and linking. Although this is not the job of an abstract
language definition, we give some practical thoughts on this issue here.

What are compilation and linking in our framework? The short answer
is that compilation and linking can be almost anything that the implementor
desires. The abstract nature of the specification confers this freedom. By im-
plementing the Definition semantics directly, “compilation” essentially amounts
to merely type-checking the input; the Definition version does not apply any
interesting program transformations. Linking and completion are no-ops, and
execution is interpretation. For an interpreter-based implementation of SML
like HaMLet [ham], this may be precisely the correct choice: here, “separate
compilation” means simply “separate type-checking.”

A similar scenario may obtain for real compilers. For instance, MLton [MLt05],
which is a whole-program compiler, cannot compile a source file to machine code
without the rest of the program available. For MLton, the process of “separate
compilation” amounts to “separate type-checking” as well. It is only when all
of the parts of the program are “linked” to completion that the compiler can
actually perform its whole-program analyses. When compiling is as simple as
type-checking, there is not much benefit to supporting incremental recompila-
tion.

For more traditional compilers, separate compilation has a more traditional
meaning. For instance, TILT produces a .o file for each unit, along with a
compiled version of the interface. Linking is performed using the system linker.
Doing as much compilation as possible makes recompilation, and reuse of li-
braries (such as the Standard Basis) in multiple programs, more efficient. On
the other hand, it may make it impossible to perform certain global optimiza-
tions like cross-unit inlining. Fortunately, there is no need to necessarily choose
one or the other: For TILT, we plan to also provide a flag that compiles an entire
complete source program as a single unit, in the case that we want to enable
intra-unit optimizations for the entire program. In the following section we walk
through a few examples using TILT, to give a feel for how a tool implementing
the proposed language might work.

3.1 TILT Implementation and Examples

XXX TO-DO: here is where we appeal to hackers, by giving a small example
that shows off the SC/IR features of TILT; its command-line syntax, etc. (I’ll
need Dave’s help..)

12

unit identifiers U
open list opens ::= {U1 . . . Un}

interface identifiers I
interface expressions ie ::= "filename" 〈opens〉

declarations dec ::= interface I = ie
| unit U 〈: I 〉 = "filename" 〈opens〉
| unit U : I

Table 1: EL concrete syntax

top-level specifications tspec ::= spec (MTHM 14)
| functor fspec
| signature sigbind

functor specifications fspec ::= funid(strid : sigexp1) : sigexp2

〈and fspec〉
| infix 〈d〉 vid1 · · · vidn

| infixr 〈d〉 vid1 · · · vidn

| nonfix vid1 · · · vidn

Table 2: Interface concrete syntax. Interface files consist of a series of top-level
specifications.

4 External Language Concrete Syntax

4.1 Parsing

We do not formalize the process of parsing in this document, because we are
much more concerned with the static and dynamic semantics than the surface
syntax. Parsing the concrete syntax (Tables 1 and 2) into the abstract syntax
is simple, except for a few small issues.

First, the list of “opened” modules (given with curly braces) is optional for
both interfaces and unit implementations. The meaning when they are present
is obvious; when absent,1 this should be parsed as the list of all unit declarations
preceding this one in the file, in the order they appear. This gives programmers
a convenient syntax for small programs, or when migrating codebases without
explicit dependencies (e.g. SML/NJ CM files). Of course, providing an accurate
“open” list generally results in better incremental recompilation and selective
linking performance.

More complex is the issue of infix and related “fixity” declarations. Fixity
declarations do not appear in the abstract syntax at all; they are an entirely
parse-time construct. Although they may appear in both interfaces and units,
no matching takes place at parse time—a unit that declares infix x matches
an interface that declares nonfix x (or nothing at all), and vice versa, because
neither declaration makes it to the elaboration phase. For the purposes of
parsing later units, an implementation should use only the infix declarations in

1Note that the programmer represents an empty list of opens with empty curly braces.

13

the interfaces of the opened units. However, since an omitted interface indicates
that the interface should be gleaned from the implementation, for code where
no interface is supplied, the fixity context that the implementation produces
should be used instead.

Finally, because the initial environment provides a fixity context, but the
references to it are installed automatically by elaboration, the parser needs to
also implicitly include this fixity context (before the fixity declarations for the
opened units) when parsing each unit.

Syntactic compatibility between implementations is of course important. Be-
cause this issue is not trivial, if this proposal is accepted with this concrete syn-
tax, it would be worthwhile to formalize the parsing process. Better still, dealing
with infix in a more principled way (which would probably require changes to
the SML core) that makes parsing obvious might be possible.

5 Conclusion

We have presented a modest extension to Standard ML for the organization of
large projects spread across multiple compliation units. The system permits
separate compilation (where the notions of compilation and linking necessarily
varies from compiler to compiler) and optimizations such as incremental recom-
pilation. Importantly, the proposal is in the form of a language with a formal
specification. In order to simultaneously target multiple definitions of the source
language, the extension is given in terms of an abstract interface, which we im-
plement with both the original Definition and the type-theoretic Harper-Stone
interpretation.

Although many extensions are possible, and desirable, we feel that this pro-
posal represents a minimal useful extension that should be easy to implement
and understand by programmers. We hope that the proposed language can
serve as a testbed for such future extensions while providing a well-defined and
stable subset for the purpose of sharing code between implementations.

References

[DWE98] Sophia Drossopoulou, David Wragg, and Susan Eisenbach. What is java
binary compatibility? In Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 341–361, 1998.

[GP92] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal
typing, 1992. Circulated in manuscript form. Full version in Theoretical
Computer Science, 193(1–2):75–96, February 1998.

[ham] HaMLet web site), year = 2005, note = URL:
http://www.ps.uni-sb.de/hamlet/, key = HaMLet.

[HP05] Robert Harper and Benjamin C. Pierce. Design considerations for
ML-style module systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 8, pages 293–346.
MIT Press, 2005.

14

[HS00] Robert Harper and Christopher Stone. A type-theoretic interpretation
of Standard ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

[MLt05] MLton web site, 2005. URL: http://mlton.org/.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

[TIL05] TILT web site, 2005. URL: http://www.tilt.cs.cmu.edu/.

[WDE98] D. Wragg, S. Drossopoulou, and S. Eisenbach. Java binary compatibility
is almost correct. Technical Report 3/98, Imperial College, 1998.
http://www-dse/projects/SLURP/bc.

15

A The Harper-Stone Interpretation

This section describes the instantiation of our proposal with the Harper-Stone
formalism [HS00]. Because it is aimed at implementors, knowledge of HS is a
prerequisite.

The Internal Language. The HS IL supports almost all of the features
necessary to implement the IL, so we need only add a few small things. The
syntax is given in Table 20. An impl (unit implementation) is just an HS mod
(module). In the HS IL, modules can contain functors, so this is everything that
we need. An interface naturally has a collection of sdecs (signature declarations)
to describe the components of the module. However, because signatures do not
appear in modules or as sdecs, we also include a series of tdecs. These are
declarations of signatures. These signatures may depend on the components of
the module, so the module is bound to a variable; the form of an interface thus
is var : [sdecs]; tdecs.

To check that a unit matches an interface (Rule H.1.3.45), we just use the HS
notion of signature matching to check that mod has type [sdecs]. The tdecs are
an entirely an interface artifact, so they are merely checked for well-formedness.

Interface equivalence is interesting because of the way it treats the bound
variable (Rule H.1.4.46). After checking that the two sdecs are the same, we
create a selfified version of the first sdecs. This means that abstract types are
made transparently equal to projections from the bound variable var ; for in-
stance, the signature sig type t end becomes sig type t = var.t end. We
then check that the two tdecs are equal in a context where var has the signature
[sdecs] and var’ has the selfified signature. This ensures that projections of type
components from var and var’ will be treated as equal.

The other interesting rule in the IL is context creation (Rule H.1.8.52). This
is used by the IL to convert a series of pdecs (unitid : intf) to a context for type-
checking a unit or interface. For each pdec, we generate the corresponding HS
IL variable unitid , which is simply bound in the context with the corresponding
signature [sdecs].

Elaboration. Elaboration (Section H.2) is by far the most involved process
in the HS version.

The elaboration of unit expressions is a good starting point (Rule H.2.1.53).
It begins by using the list of imported units to create a context udecs and a
substitution σ.

Context preparation is done with Rule H.2.11.70, which is really the heart of
elaboration. The units in the context pdecs are used to form an HS IL context
decs via IL context creation (Rule H.1.8.52). An HS IL context consists of entries
of the form lab B var : con, which binds the variable var at the type con, along
with the label lab. The label is used to resolve references from the external
language. The units in the first part of the context, udecs0, are not accessible
from the external language, so they are all given the label 1 arbitrarily—this

16

label cannot be written down in the external language, and in fact will never be
referred to. Note that every unit in scope goes in the context at this point. For
each unit in the import list we then produce its selfified signature (as above),
sig i, based on the HS IL variable that corresponds to the unit identifier. We bind
this signature in the context, using the variable bound in its interface (which
saves us from having to substitute for it to match) and the label 1?. Although, as
before, the programmer cannot refer to this module because he cannot write the
label 1, the “star convention” of context lookup during HS elaboration means
that the module is treated as “open,” so that identifier lookups descend into
the module. Thus, though the programmer cannot refer to an imported unit
directly, he can use its contents without qualification. The path that results
from lookup is a projection from the HS IL variable var i. Finally, we prepare
a substitution σ. A unit elaborated in this context will make references to the
imports through the variables var i, but we will want these to instead refer to
the actual implementation, which will be bound to variable unitid i.

With the context and substitution prepared, we can return to Rule H.2.1.53
for elaborating a unit expression. To do so, we elaborate the unit body topdec to
a series of top-level bindings along with corresponding specs (sdecs; tdecs). The
substitution σ is applied all around. Because the bindings are collected together
into a module (written using square brackets in HS), we need to patch up the
top-level sdecs and tdecs as well. This is accomplished by Rule H.2.3.55, which
just puts the sdecs (value, structure, functor specs, etc.) inside a signature and
then adjusts the tdecs (signature declarations that may depend on those sdecs)
to project through the bound module variable.

Another interesting rule is the one for interface ascription (Rule H.2.4.56.
Recall that this coerces a unit to a supplied interface, producing a new unit
expression. To do this we use the HS coercion compilation judgment, which
works on a path to the original module (in this case, var0), producing a new
module expression mod ′. The coercion compilation judgment also produces this
new module’s most general signature (sig), which may have more type equations
than the interface we are matching against. To produce the resulting module,
we need to bind the input module to a variable and evaluate mod ′; this is done
with an in-place functor application. Because the signature is the most general
one, in the sense that it may expose more type equations than we asked for,
we additionally coerce this module to [sdecs]. We also check that the old set
of tdecs is a superset of the new set. This check doesn’t affect the new unit
we produce, since tdecs (declarations of signatures) are a construct only of the
interfaces.

Linking. Linking is very simple in the HS interpretation. A complete program
is just an expression of type unit,2 which consists of a series of bindings for the
constituent units inside a single module (Rules in H.3.1 and H.3.2). We simply
project the last component—which is always the empty record—from this mod-
ule, in order to ensure that the entire expression has unit type. Type-checking is

2As in the empty record type, not compilation units!

17

just HS type-checking (Rule H.3.5.82), and a unit or interface requires another
unit iff it is in its free variable set (Rules H.3.3.80 and H.3.4.81).

Evaluation. Because we have prepared an HS expression by the process of
completion, evaluation is completely trivial. We simply invoke the HS dynamic
semantics in the empty environment and return either term or raise as appro-
priate (Rules in H.4.1).

B The Definition

This section describes the instantiation of our proposal with the original Defi-
nition formalism [MTHM97].

Because the Definition essentially type-checks and evaluates the external
language directly, this instantiation is mainly concerned with establishing a
superstructure above the static and dynamic semantics to check and evaluate
the assembly structure, by extending the semantic objects to account for these
new features.

The Internal Language. For the Definition, the IL is almost the same as the
EL (Table 35). A unit implementation is just an EL unit expression, perhaps
coerced to a series of interfaces. An interface consists of finite maps F , G, and
E, mapping functor identifiers, signature identifiers, and structure/type/value
identifiers to the appropriate static semantic objects, respectively. To support
definite references for separate compilation, each interface also has a set of
imports IP and exports EP , that attach labels to what would otherwise be
alpha-varying variables. These labels are just natural numbers. To see how
this works, consider Rule I.1.2.86, which type-checks a unit implementation.
After preparing the basis B from the imports, we type-check the topdec using
the judgment from the Definition, which produces a new basis B′. The “clos”
operation (Table 39) then creates the interface for this unit from the new basis
and the import environment out of Γ. The maps F , G, and E come directly
from the basis, but clos must generate the imports and exports. Exports is
simple: the “exp” operation simply generates a natural number label for each
exported type name, which is the set T . The imports list IP binds a set of type
names (the ones used in the implementation, but not the ones it exports) to
projections of labels from unit identifiers (unitid .n). This is simply the inverse
of the import environment IE that the implementation was checked in. Thus,
the basis produced is “closed” by this import environment, making reference to
other units only through these projections.

The “inst” function, also in Table 39, is the opposite operation: it instan-
tiates a closed interface to produce a Basis. This is used in the creation of
an Definition basis from a set of unit imports (Rule I.1.6.92), which was also
used above to type-check a unit. We start with B0, the set of type names that
appear in the context’s import environment. The rest of the bases may refer to
these. Then, each unit’s interface is instantiated in Γ using the inst operation.

18

Inst looks up the unit’s interface in the environment (1st clause), ensures that
there are no name collisions (which can always be achieved by alpha-varying;
2nd clause) and then instantiates the components of the basis F , G and E (3rd

clause). This is done by looking up each type name bound in the imports list
inside the import environment, and substituting through the phrase.

Elaboration. Given the setup, elaboration is quite easy (Section I.2). Unlike
the Harper-Stone formalism, elaboration is only a type-checking process, so we
leave the implementations untouched.

Linking. Linking in the Definition formalism is completely trivial (Section I.3,
because a program is just an assembly.

Evaluation. In the Harper-Stone implementation, a linked program was just
an expression to evaluate, so evaluation was trivial. For the Definition, the pro-
cess is slightly more involved, because a linked program is just an IL assembly,
and unit implementations are just EL units. So, rather than invoke the dynamic
semantics directly, we explain how to extend the Definition dynamic semantics
to also evaluate units and assemblies. Still, this process is quite straightforward.

The main extension is the unit environment, UE, which binds Definition
bases to unit identifiers. To evaluate an assembly, we simply evaluate units
in sequence. An uncaught exception packet results in early termination of the
assembly (Rules I.4.2.114 and I.4.2.115). Otherwise (Rule I.4.2.113), we simply
add the dynamic basis produced from evaluating the unit to the unit environ-
ment, and evaluate the remainder of the assembly.

Individual units are evaluated according to the Definition. The only inter-
esting rule is the one for evaluating an implementation coerced to an interface
(Rule I.4.3.118). Here we must thin the basis produced from the implementa-
tion with the ↓ operation, which is defined as a straightforward extension of the
Definition operation in Table 47.

C External Language for Assemblies

19

assembly ::= ·
assembly , intid = intexp interface definition
assembly , unitid : intexp unit description
assembly , unitid 〈: intexp〉 = unitexp unit definition

unitexp ::= open unitid1 · · · unitidn in topdec (MTHM 14)
intexp ::= open unitid1 · · · unitidn in topspec

intid
topspec ::= spec (MTHM 14)

functor funspec functor
signature sigbind signature
topspec1 topspec2

funspec ::= funid(strid : sigexp) : sigexp′ 〈and funspec〉

Table 3: EL syntax

No topspec or funspec may describe the same identifier twice.

Table 4: EL syntactic restrictions

20

D Internal Language for Assemblies

intf compilation unit interface
impl compilation unit implementation
Γ context
Γ ` intf : Intf intf is well-formed
Γ ` impl : intf impl has interface intf
Γ ` intf ≡ intf ′ : Intf interface equivalence
Γ ` intf ≤ intf ′ : Intf intf is a sub-interface of intf ′

pdecs ` Γ Γ declares units in pdecs (q.v.)
` Γ ok Γ is well-formed

Table 5: IL parameters

assm ::= ·
assm, unitid : intf unit description
assm, unitid : intf = unite unit definition

unite ::= require unitid1 · · · unitidn in impl
pdecs ::= ·

pdecs, pdec
pdec ::= unitid : intf unit description

Table 6: IL syntax

Section Judgement . . . Meaning . . .
D.1 pdecs ` assm ok assm is well-formed

D.2 pdecs ` intf : Intf intf is well-formed
D.3 pdecs ` unite : intf unite has interface intf
D.4 pdecs ` impl : intf impl has interface intf

D.5 pdecs ` intf ≡ intf ′ : Intf interface equivalence
D.6 pdecs ` intf ≤ intf ′ : Intf intf is a sub-interface of intf ′

D.7 ` pdecs ok pdecs is well-formed

Table 7: IL static semantics

21

The syntactic categories assm and pdecs specify lists of elements.

• We denote by (·, ·) the operations of syntactic concatenation for them; for
example, assm, assm ′.

• We sometimes work at the front of lists as if they were built up from left
to right; for example, pdec, pdecs.

• We sometimes omit the initial ·; for example, pdec1, . . . , pdecn.

Table 8: IL notation

Function Definition
dom(pdecs) dom(pdec1, . . . , pdecn) = {dom(pdec1), . . . ,dom(pdecn)}
dom(pdec) dom(unitid : intf) = unitid

Table 9: IL dom(·)

22

D.1 Assemblies pdecs ` assm ok

` pdecs ok

pdecs ` · ok (1)

unitid 6∈ dom(pdecs)
pdecs ` intf : Intf

pdecs, unitid : intf ` assm ok

pdecs ` unitid : intf , assm ok (2)

unitid 6∈ dom(pdecs)
pdecs ` unite : intf

pdecs, unitid : intf ` assm ok

pdecs ` unitid : intf = unite, assm ok (3)

D.2 Interfaces pdecs ` intf : Intf

pdecs ` Γ
Γ ` intf : Intf

pdecs ` intf : Intf (4)

D.3 Unit Expressions pdecs ` unite : intf

unite = require unitid1 · · · unitidn in impl
unitid1 ∈ dom(pdecs) · · · unitidn ∈ dom(pdecs)

pdecs ` impl : intf

pdecs ` unite : intf (5)

D.4 Implementations pdecs ` impl : intf

pdecs ` Γ
Γ ` impl : intf

pdecs ` impl : intf (6)

D.5 Interface Equivalence pdecs ` intf ≡ intf ′ : Intf

pdecs ` Γ
Γ ` intf ≡ intf ′ : Intf

pdecs ` intf ≡ intf ′ : Intf (7)

23

D.6 Sub-interface Relation pdecs ` intf ≤ intf ′ : Intf

pdecs ` Γ
Γ ` intf ≤ intf ′ : Intf

pdecs ` intf ≤ intf ′ : Intf (8)

D.7 Assembly Declaration Lists ` pdecs ok

` · ok (9)

` pdecs ok
unitid 6∈ dom(pdecs)
pdecs ` intf : Intf

` pdecs, unitid : intf ok (10)

D.8 Properties of the Internal Language

We assume that the parameters to the IL static semantics satisfy the following
lemma. Informally, we require that if a judgement holds, then its constituent
parts are well-formed.

Lemma 1 (Parameter Well-formedness) The following propositions hold:

1. If Γ ` intf : Intf, then ` Γ ok.

2. If Γ ` impl : intf , then Γ ` intf : Intf.

3. If Γ ` intf ≡ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

4. If Γ ` intf ≤ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

5. If pdecs ` Γ, then ` pdecs ok and ` Γ ok.

If a judgement in the IL static semantics holds, then its constituent parts
are well-formed.

Lemma 2 (Well-formedness) The following propositions hold:

1. If pdecs ` assm ok, then ` pdecs ok.

2. If pdecs ` intf : Intf, then ` pdecs ok.

3. If pdecs ` unite : intf , then pdecs ` intf : Intf.

4. If pdecs ` impl : intf , then pdecs ` intf : Intf.

5. If pdecs ` intf ≡ intf ′, then pdecs ` intf : Intf and pdecs ` intf ′ : Intf.

6. If pdecs ` intf ≤ intf ′ : Intf, then pdecs ` intf : Intf and pdecs ` intf ′ :
Intf.

24

E Elaboration

intf basis basis interface
pdecs ` unitexp impl : intf unit expressions
pdecs ` open unitid1 · · · unitidn in topspec intf interface expressions
Γ ` impl0 : intf 0 � intf impl interface ascription

Table 10: Elaborator parameters

E ::= ·
E , pdec unit description
E , intid : Intf = intf interface definition

Table 11: Elaborator syntax

Section Judgement . . . Meaning . . .
E.1 ` assembly assm; E assemblies
E.2 E ` unitexp unite : intf unit expressions
E.3 E ` intexp intf : Intf interface expressions

E.4 E ` unite0 : intf 0 � intf unite interface ascription

E.5 E ` pdecs pdecs declares units in E
E.6 ` E ok E is well-formed

Table 12: Elaborator judgements

Function Definition
dom(E) dom(·) = ∅

dom(E , pdec) = dom(E) ∪ {dom(pdec)}
dom(E , intid : Intf = intf) = dom(E) ∪ {intid}

Table 13: Elaborator dom(·)

25

E.1 Assemblies ` assembly assm; E

` · basis : intf basis ; basis : intf basis (11)

Rule 11: The basis unit is implicit in every EL assembly.

` assembly assm; E
intid 6∈ dom(E)
E ` intexp intf

` assembly , intid = intexp assm; E , intid : Intf = intf (12)

` assembly assm; E
unitid 6∈ dom(E)
E ` intexp intf

` assembly , unitid : intexp assm, unitid : intf ; E , unitid : intf (13)

` assembly assm; E
unitid 6∈ dom(E)

E ` unitexp unite : intf

` assembly , unitid = unitexp
assm, unitid : intf = unite; E , unitid : intf (14)

` assembly assm; E
unitid 6∈ dom(E)
E ` intexp intf

E ` unitexp unite0 : intf 0

E ` unite0 : intf 0 � intf unite

` assembly , unitid : intexp = unitexp
assm, unitid : intf = unite; E , unitid : intf (15)

E.2 Unit Expressions E ` unitexp unite : intf

E ` pdecs
unitexp = open unitid1 · · · unitidn in topdec

pdecs ` open basis unitid1 · · · unitidn in topdec impl : intf
unite = require basis unitid1 · · · unitidn in impl

E ` unitexp unite : intf (16)

Rule 16: The basis unit is implicitly imported for the elaboration of every top-
level declaration.

26

E.3 Interface Expressions E ` intexp intf : Intf

E ` pdecs pdecs ` open basis unitid1 · · · unitidn in topspec intf

E ` open unitid1 · · · unitidn in topspec intf : Intf (17)

Rule 17: The basis unit is implicitly imported for the elaboration of every top-
level specification.

E = E ′, intid : Intf = intf , E ′′

E ` intid intf : Intf (18)

E.4 Interface Ascription E ` unite0 : intf 0 � intf unite

unite0 = require unitid1 · · · unitidn in impl0
E ` pdecs pdecs ` Γ Γ ` impl0 : intf 0 � intf impl

unite = require unitid1 · · · unitidn in impl

E ` unite0 : intf 0 � intf unite (19)

E.5 Context Coercion E ` pdecs

· ` · (20)

E ` pdecs

E , unitid : intf ` pdecs, unitid : intf (21)

E ` pdecs

E , intid : Intf = intf ` pdecs (22)

E.6 Well-formed Elaboration Contexts ` E ok

` · ok (23)

` E ok unitid 6∈ dom(E) E ` pdecs pdecs ` intf : Intf

` E , unitid : intf ok (24)

` E ok intid 6∈ dom(E) E ` pdecs pdecs ` intf : Intf

` E , intid : Intf = intf ok (25)

27

E.7 Properties of the Elaborator

The elaborator’s translation judgements have the form

context ` input output .

The main property of the elaborator is that if context is well-formed and such
a judgement holds, then output is well-formed.

We assume that the parameters to the elaborator satisfy the following lemma.

Lemma 3 (Parameter Well-formed Translation) The following propositions
hold:

1. If · ` intf basis : Intf.

2. If pdecs ` unitexp impl : intf and ` pdecs ok, then pdecs ` impl : intf .

3. If pdecs ` open unitid1 · · · unitidn in topspec intf and ` pdecs ok, then
pdecs ` intf : Intf.

4. If Γ ` impl0 : intf 0 � intf impl, then Γ ` impl0 : intf 0, Γ ` intf 0 ≤
intf : Intf, and Γ ` impl : intf .

Lemma 4 (Well-formed Translation) The following propositions hold:

1. If ` assembly assm; E, then · ` assm ok and ` E ok.

2. If ` E ok, then E ` pdecs, ` pdecs ok, and

(a) If E ` unitexp unite : intf , then pdecs ` unite : intf .

(b) If E ` intexp intf : Intf, then pdecs ` intf : Intf.

(c) If E ` unite0 : intf 0 � intf unite, then pdecs ` unite0 : intf 0,
pdecs ` intf 0 ≤ intf : Intf, and pdecs ` unite : intf .

28

F Linking

prog linked programs
` prog ok prog is well-formed
` intf requires unitid intf depends on unitid
` impl requires unitid impl depends on unitid
` assm prog completion

Table 14: Linker parameters

program ::= · empty
program; require assm link
program; select assm link selectively

Table 15: Linking language

F.1 ` program prog completion
F.2 pdecs ` program assm linking

F.3 ` assm requires unitid assm depends on unitid
F.4 ` unite requires unitid unite depends on unitid

F.5 pdecs ` assm complete assm is complete

Table 16: Linker judgements

The conventions for lists (Table 8) apply to programs program.

Table 17: Linker conventions

29

F.1 Completion ` program prog

· ` program assm · ` assm complete ` assm prog

` program prog (26)

F.2 Linking pdecs ` program assm

` pdecs ok

pdecs ` · · (27)

pdecs ` program assm

pdecs ` require ·; program assm (28)

unitid 6∈ dom(pdecs)
pdecs ` intf : Intf 〈pdecs ` unite : intf 〉

pdecs, unitid : intf ` require assm ′; program assm

pdecs ` require (unitid : intf 〈= unite〉, assm ′); program
unitid : intf 〈= unite〉, assm (29)

pdecs = pdecs ′, unitid : intf ′, pdecs ′′

pdecs ` intf ≡ intf ′ : Intf
pdecs ` require assm ′; program assm

pdecs ` require (unitid : intf , assm ′); program assm (30)

pdecs ` program assm

pdecs ` select ·; program assm (31)

unitid 6∈ dom(pdecs)
pdecs ` intf : Intf 〈pdecs ` unite : intf 〉

pdecs, unitid : intf ` select assm ′; program assm
` assm requires unitid

pdecs ` select (unitid : intf 〈= unite〉, assm ′); program
unitid : intf 〈= unite〉, assm (32)

unitid 6∈ dom(pdecs)
pdecs ` intf : Intf 〈pdecs ` unite : intf 〉

pdecs, unitid : intf ` select assm ′; program assm
6` assm requires unitid

pdecs ` select (unitid : intf 〈= unite〉, assm ′); program assm (33)

30

pdecs = pdecs ′, unitid : intf ′, pdecs ′′

pdecs ` intf ≡ intf ′ : Intf
pdecs ` select assm ′; program assm

pdecs ` select (unitid : intf , assm ′); program assm (34)

F.3 Assembly Dependencies ` assm requires unitid

` intf requires unitid

` unitid ′ : intf 〈= unite〉, assm requires unitid (35)

` unite requires unitid

` unitid ′ : intf = unite, assm requires unitid (36)

unitid ′ 6= unitid ` assm requires unitid

` unitid ′ : intf 〈= unite〉, assm requires unitid (37)

F.4 Unit Dependencies ` unite requires unitid

unite = require unitid1 · · · unitidn in impl
unitid ∈ {unitid1, . . . , unitidn}

` unite requires unitid (38)

unite = require unitid1 · · · unitidn in impl
` impl requires unitid

` unite requires unitid (39)

F.5 Complete Assemblies pdecs ` assm complete

` pdecs ok

pdecs ` · complete (40)

basis 6∈ dom(pdecs)
pdecs ` intf ≡ intf basis : Intf

pdecs, basis : intf ` assm complete

pdecs ` basis : intf , assm complete (41)

Rule 41: The basis unit is the only unit that may be unimplemented in a
complete IL assembly. Conceptually, the judgement ` assm prog supplies an
implementation.

31

unitid 6∈ dom(pdecs)
pdecs ` unite : intf

pdecs, unitid : intf ` assm complete

pdecs ` unitid : intf = unite, assm complete (42)

F.6 Properties of the Linker

We assume that the parameters to the linker satisfy the following lemma.

Lemma 5 (Linker Parameter Requirements) The following propositions
hold:

1. If ` intf requires unitid and pdecs ` intf : Intf, then unitid ∈ dom(pdecs).

2. If ` impl requires unitid and pdecs ` impl : intf , then unitid ∈ dom(pdecs).

3. If ` assm prog and · ` assm complete, then ` prog ok.

The linker satsifies the following lemma.

Lemma 6 (Linker Well-formed Translation) The following propositions hold:

1. If ` program prog, then ` prog ok.

2. If pdecs ` program assm, and ` pdecs ok, then pdecs ` assm ok.

3. If ` assm requires unitid and pdecs ` assm ok, then unitid ∈ dom(pdecs).

4. If ` unite requires unitid and pdecs ` unite : intf , then unitid ∈ dom(pdecs).

5. If pdecs ` assm complete, then pdecs ` assm ok.

32

G Evaluation

` prog ⇒ res prog evaluates to res (q.v.)

Table 18: Evaluator parameters

res ::= term termination
raise uncaught exception

Table 19: Evaluator syntax

33

H The Harper-Stone Interpretation of Standard
ML

H.1 Parameters for the Internal Language

impl := mod module
intf ::= var : [sdecs]; tdecs signature for unit’s module

and its top-level declarations
tdecs ::= ·

tdecs, tdec
tdec ::= sigid : Sig = sig

Γ ::= decs declarations

Table 20: IL syntax (HS)

Section Judgement . . . Meaning . . .
H.1.1 decs ` intf : Intf intf is well-formed
H.1.2 decs ` tdecs ok tdecs is well-formed

H.1.3 decs ` impl : intf impl has interface intf

H.1.4 decs ` intf ≡ intf ′ : Intf interface equivalence
H.1.5 decs ` tdecs ≡ tdecs ′ tdecs equivalence

H.1.6 decs ` intf ≤ intf ′ : Intf sub-interface relation
H.1.7 decs ` tdecs ≤ tdecs ′ tdecs inclusion

H.1.8 pdecs ` decs decs declares units in pdecs

HS 3.4.1 ` decs ok decs is well-formed

Table 21: IL static semantics (HS)

Phrase Bound Variables Scope
var : [sdecs]; tdecs var tdecs

Table 22: HS bound variables and scopes

34

• We assume an injective function · taking unit identifiers to HS IL vari-
ables and that there are countably many variables not in the range of this
function.

• The syntactic category tdecs specifies a list of elements. The conventions
in Table 8 apply to it.

Table 23: HS notation for the static semantics

Function Definition
dom(tdecs) dom(tdec1, . . . , tdecn) = {dom(tdec1), . . . ,dom(tdecn)}
dom(tdec) dom(sigid : Sig = sig) = sigid

Table 24: HS dom(·)

35

H.1.1 Well-formed Interfaces decs ` intf : Intf

var 6∈ BV(decs) decs ` sdecs ok decs, var : [sdecs] ` tdecs ok

decs ` (var : [sdecs]; tdecs) : Intf (43)

H.1.2 Well-formed Top-level Declaration Lists decs ` tdecs ok

` decs ok
tdecs = sigid1 : Sig = sig1, . . . , sigidn : Sig = sign

sigid1, . . . , sigidn are distinct
decs ` sig1 : Sig · · · decs ` sign : Sig

decs ` tdecs ok (44)

H.1.3 Well-formed Implementations decs ` impl : intf

var 6∈ BV(decs) decs ` mod : [sdecs] decs, var : [sdecs] ` tdecs ok

decs ` mod : (var : [sdecs]; tdecs) (45)

H.1.4 Interface Equivalence decs ` intf ≡ intf ′ : Intf

var 6∈ BV(decs) var ′ 6∈ BV(decs) ∪ {var}
decs ` sdecs ≡ sdecs ′ decs, var : [sdecs] ` var : sig

decs, var : [sdecs], var ′ : sig ` tdecs ≡ tdecs ′

decs ` (var : [sdecs]; tdecs) ≡ (var ′ : [sdecs ′]; tdecs ′) : Intf (46)

Rule 46: If decs, var : [sdecs] ` var : sig holds, then sig is a selfified signature
for var ; in particular, sig is fully transparent, maximizing type sharing when
signatures in tdecs and tdecs ′ are compared.

H.1.5 tdecs equivalence decs ` tdecs ≡ tdecs ′

decs ` tdecs ≤ tdecs ′ decs ` tdecs ′ ≤ tdecs

decs ` tdecs ≡ tdecs ′ (47)

H.1.6 Sub-interface Relation decs ` intf ≤ intf ′ : Intf

var 6∈ BV(decs) var ′ 6∈ BV(decs) ∪ {var}
decs ` sdecs ≤ sdecs ′ decs, var : [sdecs] ` var : sig

decs, var : [sdecs], var ′ : sig ` tdecs ≤ tdecs ′

decs ` (var : [sdecs]; tdecs) ≤ (var ′ : [sdecs ′]; tdecs ′) : Intf (48)

Rule 48: If decs, var : [sdecs] ` var : sig holds, then sig is a selfified signature
for var ; in particular, sig is fully transparent, maximizing type sharing when
signatures in tdecs and tdecs ′ are compared.

36

H.1.7 tdecs Inclusion decs ` tdecs ≤ tdecs ′

decs ` tdecs ok

decs ` tdecs ≤ · (49)

decs ` tdecs ≤ tdecs ′

sigid 6∈ dom(tdecs ′)
tdecs = tdecs1, sigid = sig ′ : Sig, tdecs2

decs ` sig ≡ sig ′ : Sig

decs ` tdecs ≤ tdecs ′, sigid = sig : Sig (50)

H.1.8 Context Creation pdecs ` decs

· ` · (51)

pdecs ` Γ unitid 6∈ BV(Γ) var 6∈ BV(Γ)
Γ ` sdecs ok Γ, var : [sdecs] ` tdecs ok

pdecs, unitid : (var : [sdecs]; tdecs) ` Γ, unitid : [sdecs] (52)

H.1.9 Properties of the HS Parameters for the IL

Lemma 7 (Well-formedness) The following propositions hold:

1. If decs ` intf : Intf, then ` decs ok.

2. If decs ` tdecs ok, then ` decs ok.

3. If decs ` impl : intf , then decs ` intf : Intf.

4. If decs ` intf ≡ intf ′ : Intf, then decs ` intf : Intf and decs ` intf ′ : Intf.

5. If decs ` tdecs ≡ tdecs ′, then decs ` tdecs ok and decs ` tdecs ′ ok.

6. If decs ` intf ≤ intf ′ : Intf, then decs ` intf : Intf and decs ` intf ′ : Intf.

7. If decs ` tdecs ≤ tdecs ′, then decs ` tdecs ok and decs ` tdecs ′ ok.

8. If pdecs ` decs, then ` pdecs ok and ` decs ok.

H.2 Parameters for the Elaborator

37

udecs ::= ·
udecs, udec

udec ::= sdec
tdec

σ ::= ·
σ, var/var ′

σ, lab.var/var ′

Table 25: HS elaborator syntax

Section Judgement . . . Meaning . . .
H.2.1 pdecs ` unitexp impl : intf unit expressions
H.2.2 pdecs ` open unitid1 · · · unitidn in topspec intf : Intf

interface expressions
H.2.3 udecs ` sdecs; tdecs intf : Intf interface creation

H.2.4 decs ` impl0 : intf 0 � intf impl interface ascription

H.2.5 udecs ` topdec sbnds : (sdecs; tdecs) top-level declarations
H.2.6 udecs ` topspec sdecs; tdecs top-level specifications
H.2.7 udecs ` sigbind tdecs signature bindings
H.2.8 udecs ` sigexp sig : Sig signature expressions
H.2.9 udecs ` funspec sdecs functor specifications

H.2.10 udecs `ctx sigid sig : Sig signature lookup

H.2.11 pdecs ` open unitid1 · · · unitidn udecs, σ udecs declares units in pdecs and
top-level identifiers in unitid i

H.2.12 ` udecs ok udecs is well-formed
H.2.13 udecs ` decs decs declares constructors,

modules, and expressions
in udecs

Table 26: HS elaborator judgments

Function Definition
dom(udecs) dom(udec1, . . . , udecn) = {dom(udec1), . . . ,dom(udecn)}
dom(udec) dom(sdec) = dom(sdec)

dom(tdec) = dom(tdec)
dom(sdec) dom(lab B dec) = lab
BV(sdec) BV(lab B dec) = BV(dec)

Table 27: HS elaborator dom(·) and BV(·)

38

Phrase Bound Variables Scope
sdec, udecs BV(sdec) udecs

Table 28: HS elaborator bound variables and scopes

• The basis interface is defined by intf basis = var : sigbasis ; ·.

• The HS elaborator assumes the presence of a structure basis:sigbasis serv-
ing as the initial basis for the HS IL. It must contain at least the following
fields which define three exceptions:

[Bind? :[tag:Unit Tag,Bind:Tagged],
Match?:[tag:Unit Tag,Match:Tagged],
fail? :[tag:Unit Tag, fail:Tagged]].

This assumption is satisfied by the basis unit.

• An HS elaboration context udecs is a list of structure and top-level decla-
rations; this is an extension to HS where elaboration contexts are structure
declaration lists (sdecs) that may contain duplicate labels.

• The HS external language supports higher-level functors but Standard
ML does not. For compatiblity with SML, we modify the HS EL and
elaborator as follows.

– Remove functor funbind from the syntax of EL structure declarations
(HS 34) and Rule 205 (HS 47) for elaborating htem.

– Remove functor funid(strid : sigexp) : sigexp′ from the syntax of EL
structure specifications and Rule 224 (HS 50) for elaborating them.

These changes, together with Rules 59 and 66, ensure that EL functors
may only be defined at the top-level of a compilation unit.

• The conventions for lists (Table 8) apply to HS elaboration contexts udecs
and to substitution lists σ.

• The notation {phrase/var ′}phrase, denotes the capture-free substitution
of phrase for free occurrences of var within phrase ′.

Table 29: HS elaborator conventions

{·}phrase = phrase
{σ, var/var ′}phrase = {var/var ′}({σ}phrase)
{σ, lab.var/var ′}phrase = {lab.var/var ′}({σ}phrase)

Table 30: HS elaborator substitution {σ}phrase

39

(·++tdecs ′) = tdecs ′

(sigid : Sig = sig , tdecs++tdecs ′) ={
sigid : Sig = sig , tdecs ′′ if sigid 6∈ dom(tdecs ′′)
tdecs ′′ otherwise

where tdecs ′′ = tdecs++tdecs ′

Table 31: HS elaborator shadowing tdecs++tdecs ′

40

H.2.1 Unit Expressions pdecs ` unitexp impl : intf

pdecs ` open unitid1 · · · unitidn udecs, σ
udecs ` topdec sbnds : (sdecs; tdecs)

impl = [{σ}sbnds] udecs ` {σ}sdecs; {σ}tdecs intf : Intf

pdecs ` open unitid1 · · · unitidn in topdec impl : intf (53)

H.2.2 Interface Expressions

pdecs ` open unitid1 · · · unitidn in topspec intf : Intf

pdecs ` open unitid1 · · · unitidn udecs, σ
udecs ` topspec sdecs; tdecs

udecs ` {σ}sdecs; {σ}tdecs intf : Intf

pdecs ` open unitid1 · · · unitidn in topspec intf : Intf (54)

H.2.3 Interface Creation udecs ` sdecs; tdecs intf : Intf

var 6∈ BV(decs)
sdecs = lab1 B dec1, . . . , labn B decn

var1 = BV(dec1) · · · varn = BV(decn)
σ = var .lab1/var1, . . . , var .labn/varn

intf = (var : [sdecs]; {σ}tdecs)
udecs ` sdecs; tdecs intf : Intf (55)

H.2.4 Interface Ascription decs ` impl0 : intf 0 � intf impl

var0 6= var
decs, var0 : [sdecs0] `sub var0 : [sdecs0] � [sdecs] mod ′ : sig

decs, var0 : [sdecs0], var : sig ` tdecs ≤ tdecs0

mod = (((λvar0 : [sdecs0].mod ′) mod0) : [sdecs])

decs ` mod0 : (var0 : [sdecs0]; tdecs0) � (var : [sdecs]; tdecs) mod (56)

Rule 56: The rules for the coercion compiler ensure that sig is fully transparent,
maximizing type sharing when signatures in tdecs and tdecs0 are compared.

H.2.5 Top-Level Declarations udecs ` topdec sbnds : (sdecs; tdecs)

udecs ` strdec sbnds : sdecs
〈udecs, sdecs ` topdec sbnds ′ : (sdecs ′; tdecs)〉
udecs ` strdec 〈topdec〉

sbnds〈++sbnds ′〉 : (sdecs〈++sdecs ′〉; ·〈++tdecs〉) (57)

41

udecs ` sigbind tdecs
〈udecs, tdecs ` topdec sbnds : (sdecs; tdecs ′)〉

udecs ` signature sigbind 〈topdec〉
·〈, sbnds〉 : (·〈, sdecs〉; tdecs〈++tdecs ′〉) (58)

udecs ` funbind sbnds : sdecs
〈udecs, sdecs ` topdec sbnds ′ : (sdecs ′; tdecs)〉
udecs ` functor funbind 〈topdec〉

sbnds〈++sbnds ′〉 : (sdecs〈++sdecs ′〉; ·〈++tdecs〉) (59)

H.2.6 Top-Level Specifications udecs ` topspec sdecs; tdecs

udecs ` spec sdecs

udecs ` spec sdecs; · (60)

udecs ` funspec sdecs

udecs ` functor funspec sdecs; · (61)

udecs ` sigbind tdecs

udecs ` signature sigbind ·; tdecs (62)

udecs ` topspec1 sdecs1; tdecs1

udecs, sdecs1, tdecs1 ` topspec2 sdecs2; tdecs2

udecs ` decs
decs ` sdecs1, sdecs2 ok decs ` tdecs1, tdecs2 ok

udecs ` topspec1 topspec2 sdecs1, sdecs2; tdecs1, tdecs2 (63)

Rule 63: Because of include, there is no way to restrict the syntax to ensure that
the concatenations sdecs1, sdecs2 and tdecs1, tdecs2 are well-formed.

H.2.7 Signature Bindings udecs ` sigbind tdecs

udecs ` sigexp sig : Sig
〈udecs ` sigbind tdecs sigid 6∈ dom(tdecs)〉

udecs ` sigid = sigexp 〈and sigbind〉 sigid = sig〈, tdecs〉 (64)

H.2.8 Signature Expressions udecs ` sigexp sig : Sig

To the rules in HS Section 6.6.8, we add the following rule for signature defini-
tions.

udecs `ctx sigid sig : Sig

udecs ` sigid sig : Sig (65)

42

H.2.9 Functor Specifications udecs ` funspec sdecs

udecs ` sigexp sig : Sig var 6∈ BV(udecs)
udecs, strid B var : sig ` sigexp′ sig ′ : Sig

〈udecs ` funspec sdecs funid 6∈ dom(sdecs)〉
udecs ` funid(strid : sigexp) : sigexp′ 〈and funspec〉

funid : (var : sig ⇀ sig ′)〈, sdecs〉 (66)

H.2.10 Signature Lookup udecs `ctx sigid sig : Sig

udecs, sigid : Sig = sig `ctx sigid sig : Sig (67)

sigid ′ 6= sigid udecs `ctx sigid sig : Sig

udecs, sigid ′ : Sig = sig ′ `ctx sigid sig : Sig (68)

udecs `ctx sigid sig : Sig

udecs, sdec `ctx sigid sig : Sig (69)

H.2.11 Context Creation pdecs ` open unitid1 · · · unitidn udecs, σ

unitid1, . . . , unitidn ∈ dom(pdecs)
pdecs ` decs decs = dec1, . . . , decm

udecs0 = 1 B dec1, . . . , 1 B decm

pdecs = pdecs ′1, unitid1 : (var1 : [sdecs1]; tdecs1), pdecs ′′1
decs ` unitid1 : sig1 udecs1 = 1? B var1 : sig1, tdecs1

...
pdecs = pdecs ′n, unitidn : (varn : [sdecsn]; tdecsn), pdecs ′′n
decs ` unitidn : sign udecsn = 1? B varn : sign, tdecsn

udecs = udecs0, udecs1, . . . , udecsn

σ = unitid1/var1, . . . , unitidn/varn

pdecs ` open unitid1 · · · unitidn udecs, σ (70)

Rule 70: If decs ` unitid i : sig i holds, then sig i is a selfified signature for unitid i.

H.2.12 Well-formed Contexts ` udecs ok

` · ok (71)

` udecs ok udecs ` decs decs ` dec ok

` udecs, lab B dec ok (72)

43

` udecs ok udecs ` decs decs ` tdec ok

` udecs, tdec ok (73)

H.2.13 Context Coercion udecs ` decs

udecs ` decs

udecs, lab B dec ` decs, dec (74)

udecs ` decs

udecs, tdec ` decs (75)

H.2.14 Properties of the HS Parameters for the Elaborator

Lemma 8 (Well-formed Translation) The following propositions hold:

1. · ` intf basis : Intf.

2. If pdecs ` unitexp impl : intf and ` pdecs ok, then pdecs ` impl : intf .

3. If pdecs ` open unitid1 · · · unitidn in topspec intf : Intf and ` pdecs ok,
then pdecs ` intf : Intf.

4. If udecs ` sdecs; tdecs intf : Intf and ` udecs, sdecs, tdecs ok, then
udecs ` decs and decs ` intf : Intf.

5. If decs ` impl0 : intf 0 � intf impl, then decs ` impl0 : intf 0, decs `
intf 0 ≤ intf : Intf, and decs ` impl : intf .

6. If udecs ` topdec sbnds : (sdecs; tdecs) and ` udecs ok, then udecs `
decs, decs ` sbnds : sdecs, and ` udecs, sdecs, tdecs ok.

7. If udecs ` topspec sdecs; tdecs and ` udecs ok, then udecs ` decs,
decs ` sdecs ok, and ` udecs, sdecs, tdecs ok.

8. If udecs ` sigbind tdecs and ` udecs ok, then ` udecs, tdecs ok.

9. If udecs ` sigexp sig : Sig and ` udecs ok, then udecs ` decs and
decs ` sig : Sig.

10. If pdecs ` open unitid1 · · · unitidn udecs, σ and ` pdecs ok, then `
udecs ok.

11. If udecs ` funspec sdecs and ` udecs ok, then udecs ` decs and decs `
sdecs ok.

12. If udecs `ctx sigid sig : Sig and ` udecs ok, then udecs ` decs and
decs ` sig : Sig.

13. If ` udecs ok, then udecs ` decs and ` decs ok.

44

prog ::= exp : {} closed expression of type unit

Table 32: HS linker syntax

Section Judgement . . . Meaning . . .
H.3.1 ` assm prog completion
H.3.2 ` assm bnds : decs

H.3.3 ` intf requires unitid intf depends on unitid
H.3.4 ` impl requires unitid impl depends on unitid

H.3.5 ` prog ok prog is well-formed

Table 33: HS linker judgements

H.3 Parameters for the Linker

45

H.3.1 Completion Expression ` assm prog

` assm bnd1, . . . , bndn : decs var 6∈ BV(decs)

` assm [1 B bnd1, . . . , n B bndn, (n + 1) B var = {}].(n + 1) : {} (76)

H.3.2 Completion Bindings ` assm bnds : decs

` · · : · (77)

` assm bnds : decs
intf = var : [sdecs]; tdecs

` assm, basis : intf
(bnds, basis = modbasis) : (decs, basis : [sdecs])

(78)

Rule 78: Since ` assm complete, [sdecs] is equivalent to sigbasis . The structure
modbasis must satisfy · ` modbasis : sigbasis ; in particular, it must contain at
least the following fields:

[Bind? =[tagBvar=new tag[Unit],Bind=tag(var , {})],
Match?=[tagBvar=new tag[Unit],Match=tag(var , {})],
fail? =[tagBvar=new tag[Unit], fail=tag(var , {})]].

` assm bnds : decs
intf = var : [sdecs]; tdecs

unite = require unitid1 · · · unitidn in mod

` assm, unitid : intf = unite
(bnds, unitid = mod) : (decs, unitid : [sdecs])

(79)

H.3.3 Interface Dependencies ` intf requires unitid

unitid ∈ FV(intf)

` intf requires unitid (80)

H.3.4 Implementation Dependencies ` impl requires unitid

unitid ∈ FV(mod)

` mod requires unitid (81)

H.3.5 Well-formed Programs ` prog ok

· ` exp : {}
` exp : {} ok (82)

46

H.3.6 Properties of the HS Parameters for the Linker

Lemma 9 The following propositions hold:

1. If ` assm prog and · ` assm complete, then ` prog ok.

2. If ` assm bnds : decs and · ` assm complete, then ` bnds : decs.

3. If ` intf requires unitid and pdecs ` intf : Intf, then unitid ∈ dom(pdecs).

4. If ` impl requires unitid and pdecs ` impl : intf , then unitid ∈ dom(pdecs).

47

Section Judgement . . . Meaning . . .
H.4.1 ` prog ⇒ res prog evaluates to res

Table 34: HS dynamic semantics

H.4 HS Evaluator

H.4.1 Programs ` prog ⇒ res

(·, ·, [], exp) ↪→? (∆, σ, [], {})
` exp : {} ⇒ term (83)

(·, ·, [], exp) ↪→? (∆, σ, [], raise{} expv)

` exp : {} ⇒ raise (84)

48

I The Definition of Standard ML

I.1 Parameters for the Internal Language

intf ::= IP , F, G,E,EP imports, environments, and exports
impl ::= unitexp basic

impl : intf coerced to intf
Γ ::= IE ;UE import and unit environments

Table 35: MTHM IL syntax

Section Judgement . . . Meaning . . .
I.1.1 Γ ` intf : Intf intf is well-formed
I.1.2 Γ ` impl : intf impl has interface intf

I.1.3 Γ ` intf ≡ intf ′ : Intf interface equivalence
I.1.4 Γ ` intf ≤ intf ′ : Intf intf is a sub-interface of intf ′

I.1.5 pdecs ` Γ Γ declares units in pdecs

I.1.6 Γ ` open unitid1 · · · unitidn ⇒ B B declares type names in Γ
and top-level identifiers in unitid i

I.1.7 ` Γ ok Γ is well-formed
MTHM 4.9 ` F ok F is well-formed

` G ok G is well-formed
` E ok E is well-formed

Table 36: MTHM IL static semantics

49

Γ ∈ Context = ImportEnv ×UnitEnv

IE ∈ ImportEnv = TyNameRef
fin
� TyName

UE ∈ UnitEnv = UnitId fin→ IntF
unitid .n ∈ TyNameRef = UnitId×Nat

intf ∈ IntF = Imports× FunEnv × SigEnv × Env × Exports

IP ∈ Imports = TyName
fin
� TyNameRef

EP ∈ Exports = Nat
fin
� TyName

unitid ∈ UnitId (unit identifiers)
n ∈ Nat (natural numbers)

B or T, F,G,E ∈ Basis = TyNameSet× FunEnv × SigEnv × Env
T ∈ TyNameSet = Fin(TyName)
F ∈ FunEnv = FunId fin→ FunSig
G ∈ SigEnv = SigId fin→ Sig

E or (SE ,TE ,VE) ∈ Env = StrEnv × TyEnv ×ValEnv
Φ or (T)(E, (T ′)E′) ∈ FunSig = TyNameSet× (Env × Sig)

Σ or (T)E ∈ Sig = TyNameSet× Env
SE ∈ StrEnv = StrId fin→ Env
TE ∈ TyEnv = TyCon fin→ TyStr
VE ∈ ValEnv = VId fin→ TypeScheme× IdStatus

(θ,VE) ∈ TyStr = TypeFcn×ValEnv
σ or ∀α(k).τ ∈ TypeScheme =

⋃
k≥0 TyVark × Type

θ or Λα(k).τ ∈ TypeFcn =
⋃

k≥0 TyVark × Type
τ ∈ Type = TyVar× RowType× FunType× ConsType

(α1, · · · , αk) or α(k) ∈ TyVark

% ∈ RowType = Lab fin→ Type
τ → τ ′ ∈ FunType = Type× Type

ConsType =
⋃

k≥0 ConsType(k)

τ (k)t ∈ ConsType(k) = Typek × TyName(k)

(τ1, · · · , τk) or τ (k) ∈ Typek

t ∈ TyName (type names)
funid ∈ FunId (functor identifiers)
sigid ∈ SigId (signature identifiers)
strid ∈ StrId (structure identifiers)
tycon ∈ TyCon (type constructors)

vid ∈ VId (value identifiers)
α or tyvar ∈ TyVar (type variables)

is ∈ IdStatus = {c, e, v} (identifier status descriptors)
lab ∈ Lab (labels)

Table 37: MTHM static semantic objects

50

• We denote by A
fin
� B the set of injective, finite partial functions from A

to B. If f : A
fin
� B, then we denote its inverse by f−1 : B

fin
� A.

• We assume an injective function exp : TyNameSet → Exports that satis-
fies rng(exp(T)) = T .

• Interface imports and exports, together with context import environments,
support definite references to type names between separately compiled
units; in particular, if intf = IP , F, G,E,EP and Γ = IE ;UE , then

– The sets dom(IP) and rng(EP) bind type names that may occur free
in F , G, and E.

– Imports IP are resolved in context; for example, if IE (unitid .n) = t′,
then an import t 7→ unitid .n is resolved by substituting t′ for free
occurrences of t in intf .

– Exports EP label the type names bound in intf ; for example, if
unitid : intf and EP(n) = t, then unitid .n is a definite reference to
t.

• The notation {t/t′}phrase denotes the capture-free substitution of t for
free occurrences of t′ in phrase where phrase ::= F |G |E.

Table 38: MTHM notation and conventions for the static semantics

51

clos : ImportEnv × Basis ⇀ IntF
clos(IE , B) = IP , F, G,E,EP

if tynames B \ T ⊂ rng(IE)
where B = T, F,G,E

IP = {t 7→ IE−1(t) ; t ∈ tynames B \ T}
EP = exp(T)

inst : Context×UnitId ⇀ Basis
inst((IE ;UE), unitid) = inst(IE ,UE (unitid))

if unitid ∈ dom(UE) and (IE ,UE (unitid)) ∈ dom(inst)

inst : ImportEnv × IntF ⇀ Basis
inst(IE , (IP , F, G,E,EP)) = T, F ′, G′, E′

if dom(IP) ∩ rng(IE) = ∅, rng(IP) ⊂ dom(IE)
and dom(IP) ∩ rng(EP) = ∅
where T = rng(EP)

F ′ = inst(IE , IP , F)
G′ = inst(IE , IP , G)
E′ = inst(IE , IP , E)

inst : ImportEnv × Imports× phrase ⇀ phrase
inst(IE , IP , phrase) = {t′1/t1} · · · {t′n/tn}phrase

if dom(IP) ∩ rng(IE) = ∅ and rng(IP) ⊂ dom(IE)
where dom(IP) = {t1, . . . , tn}
and t′i = IE (IP(ti)) for 1 ≤ i ≤ n

Table 39: MTHM clos(·) and inst(·)

52

I.1.1 Well-formed Interfaces Γ ` intf : Intf

` IE ;UE ok
` F ok ` G ok ` E ok tyvars F ∪ tyvars G ∪ tyvars E = ∅

tynames F ∪ tynames G ∪ tynames E = dom(IP) ∪ rng(EP)
dom(IP) ∩ rng(EP) = ∅

rng(IP) ⊂ dom(IE) dom(IP) ∩ rng(IE) = ∅
rng(EP) ∩ rng(IE) = ∅

IE ;UE ` (IP , F, G,E,EP) : Intf (85)

Rule 85: The side-conditions dom(IP)∩rng(IE) = ∅ and rng(EP)∩rng(IE) = ∅
can always be satisfied by renaming bound type names.

I.1.2 Well-formed Implementations Γ ` impl : intf

Γ ` open unitid1 · · · unitidn ⇒ B
B ` topdec ⇒ B′ tyvars B′ = ∅

intf = clos(IE of Γ, B′)

Γ ` open unitid1 · · · unitidn in topdec : intf (86)

Γ ` impl : intf ′ Γ ` intf ′ ≤ intf : Intf

Γ ` (impl : intf ′) : intf (87)

I.1.3 Interface Equivalence Γ ` intf ≡ intf ′ : Intf

Γ ` intf : Intf

Γ ` intf ≡ intf : Intf (88)

Rule 88: Two interfaces are equivalent if they are identical up to consistent
renaming of bound type names.

I.1.4 Sub-interface Relation Γ ` intf ≤ intf ′ : Intf

Γ ` intf : Intf Γ ` intf ′ : Intf
rng(EP of intf) ∩ rng(EP of intf ′) = ∅

T, F,G,E = inst(IE of Γ, intf) T ′, F ′, G′, E′ = inst(IE of Γ, intf ′)
dom(F) ⊃ dom(F ′) ∀funid ∈ dom(F ′).F ′(funid) ≥ F (funid)
dom(G) ⊃ dom(G′) ∀sigid ∈ dom(G′).G′(sigid) ≥ G(sigid)

(T ′)E′ ≥ E′′ ≺ E

Γ ` intf ≤ intf ′ : Intf (89)

Rule 89: The side condition rng(EP of intf)∩ rng(EP of intf ′) = ∅ can always
be satisfied by renaming bound type names.

53

I.1.5 Context Creation pdecs ` Γ

· ` {}, {} (90)

pdecs ` IE ;UE unitid 6∈ dom(UE) IE ;UE ` intf : Intf
IE ′ = {t 7→ unitid ; t ∈ rng(EP of intf)}

UE ′ = {unitid 7→ intf }
pdecs, unitid : intf ` IE + IE ′;UE + UE ′ (91)

I.1.6 Basis Creation Γ ` open unitid1 · · · unitidn ⇒ B

` Γ ok
B0 = rng(IE of Γ) in Basis

B1 = inst(Γ, unitid1) · · · Bn = inst(Γ, unitidn)

Γ ` open unitid1 · · · unitidn ⇒ B0 + B1 + · · ·+ Bn (92)

I.1.7 Well-formed Contexts ` Γ ok

∀unitid .n ∈ dom(IE).
unitid ∈ dom(UE) and
n ∈ dom(EP of UE (unitid))

∀unitid 7→ (IP , F, G,E,EP) ∈ UE .
dom(IP) ∩ rng(IE) = ∅, rng(IP) ⊂ dom(IE),
dom(IP) ∩ rng(EP) = ∅,
tynames F ∪ tynames G ∪ tynames E = dom(IP) ∪ rng(EP),
` F ok, ` G ok, ` E ok,
tyvars F ∪ tyvars G ∪ tyvars E = ∅, and
rng(EP) ∩ rng(IE) = ∅,

` IE ;UE ok (93)

I.1.8 Properties of the MTHM Parameters for the IL

Lemma 10 The following propositions hold:

1. If Γ ` intf : Intf, then ` Γ ok.

2. If Γ ` impl : intf , then Γ ` intf : Intf.

3. If Γ ` intf ≡ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

4. If Γ ` intf ≤ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

5. If pdecs ` Γ, then ` pdecs ok and ` Γ ok.

6. If Γ ` open unitid1 · · · unitidn ⇒ B, then ` Γ ok, unitid1, . . . , unitidn ∈
dom(Γ), ` B ok, and tyvars B = ∅.

54

Section Judgement . . . Meaning . . .
I.2.1 pdecs ` unitexp impl : intf unit expressions
I.2.2 pdecs ` open unitid1 · · · unitidn in topspec intf interface expressions
I.2.3 B ` topspec ⇒ B′ top-level specifications
I.2.4 B ` funspec ⇒ F functor specifications
I.2.5 Γ ` impl0 : intf 0 � intf impl interface ascription

Table 40: MTHM elaborator judgements

The basis interface is defined by intf basis = clos({}, B0) where B0 is the initial
static basis defined in MTHM Appendix G.

Table 41: MTHM basis interface

I.2 Parameters for the Elaborator

55

I.2.1 Unit Expressions pdecs ` unitexp impl : intf

pdecs ` Γ Γ ` unitexp : intf

pdecs ` unitexp unitexp : intf (94)

I.2.2 Interface Expressions

pdecs ` open unitid1 · · · unitidn in topspec intf

pdecs ` Γ Γ ` open unitid1 · · · unitidn ⇒ B
B ` topspec ⇒ B′ intf = clos(IE of Γ, B′)

pdecs ` open unitid1 · · · unitidn in topspec intf (95)

I.2.3 Top-level Specifications B ` topspec ⇒ B′

B ` spec ⇒ E B′ = T of E, {}, {}, E tyvars B′ = ∅
B ` spec ⇒ B′ (96)

B ` funspec ⇒ F B′ = T of F, F, {}, {} tyvars B′ = ∅
B ` functor funspec ⇒ B′ (97)

B ` sigbind ⇒ G B′ = T of G, {}, G, {} tyvars B′ = ∅
B ` signature sigbind ⇒ B′ (98)

B ` topspec1 ⇒ B1 B + B1 ` topspec2 ⇒ B2

dom(F of B1) ∩ dom(F of B2) = ∅
dom(G of B1) ∩ dom(G of B2) = ∅
dom(E of B1) ∩ dom(E of B2) = ∅
B ` topspec1 topspec2 ⇒ B1 + B2 (99)

I.2.4 Functor Specifications B ` funspec ⇒ F

B ` sigexp ⇒ (T)E B ⊕ {strid 7→ E} ` sigexp′ ⇒ (T ′)E′

〈B ` funspec ⇒ F funid 6∈ dom(F)〉
B ` funid(strid : sigexp) : sigexp′ 〈and funspec〉 ⇒
{funid 7→ (T)(E, (T ′)E′)} 〈+F 〉 (100)

I.2.5 Interface Ascription Γ ` impl0 : intf 0 � intf impl

Γ ` impl0 : intf 0 Γ ` intf 0 ≤ intf ′ : Intf

Γ ` impl0 : intf 0 � intf ′ (impl0 : intf ′) (101)

56

I.2.6 Properties of the MTHM Parameters for the Elaborator

Lemma 11 (Well-formed Translation) The following propositions hold:

1. · ` intf basis : Intf.

2. If pdecs ` unitexp impl : intf , and ` pdecs ok, then pdecs ` impl : intf .

3. If pdecs ` open unitid1 · · · unitidn in topspec intf and ` pdecs ok, then
pdecs ` intf : Intf.

4. If B ` topspec ⇒ B′ and ` B ok, then ` B′ ok and tyvars B′ = ∅.

5. If B ` funspec ⇒ F and ` B ok, then ` F ok.

6. If Γ ` impl0 : intf 0 � intf impl, then Γ ` impl0 : intf 0, Γ ` intf 0 ≤
intf : Intf, and Γ ` impl : intf .

I.3 Parameters for the Linker

prog ::= assm complete assembly

Table 42: MTHM linker syntax

Section Judgement . . . Meaning . . .
I.3.1 ` assm prog completion

I.3.2 ` intf requires unitid intf depends on unitid
I.3.3 ` impl requires unitid impl depends on unitid

I.3.4 ` prog ok prog is well-formed

Table 43: MTHM linker judgements

57

I.3.1 Completion ` assm prog

` assm assm (102)

I.3.2 Interface Dependencies ` intf requires unitid

∃n.unitid .n ∈ rng(IP of intf)

` intf requires unitid (103)

I.3.3 Implementation Dependencies ` impl requires unitid

unitid ∈ {unitid1, . . . , unitidn}
` open unitid1 · · · unitidn in topdec requires unitid (104)

` impl requires unitid

` impl : intf requires unitid (105)

` intf requires unitid

` impl : intf requires unitid (106)

I.3.4 Well-formed Programs ` prog ok

· ` assm complete

` assm ok (107)

I.3.5 Properties of the MTHM Parameters for the Linker

Lemma 12 The following propositions hold:

1. If ` assm prog and · ` assm complete, then ` prog ok.

2. If ` intf requires unitid and pdecs ` intf : Intf, then unitid ∈ dom(pdecs).

3. If ` impl requires unitid and pdecs ` impl : intf , then unitid ∈ dom(pdecs).

58

I.4 MTHM Evaluator

Section Judgement . . . Meaning . . .
I.4.1 ` prog ⇒ res prog evaluates to res

I.4.2 s,UE ` assm ⇒ UE ′/p, s′ assm evaluates to UE ′/p
I.4.3 s,UE ` impl ⇒ B/p, s′ impl evaluates to B/p

I.4.4 UE ` open unitid1 · · · unitidn ⇒ B B binds top-level identifiers in unitid i

Table 44: MTHM dynamic semantics

59

UE ∈ UnitEnv = UnitId fin→ Basis
(F,G, E) or B ∈ Basis = FunEnv × SigEnv × Env

(G, I) or IB ∈ IntBasis = SigEnv × Int
(mem, ens) or s ∈ State = Mem× ExNameSet

[e] or p ∈ Pack = ExVal
F ∈ FunEnv = FunId fin→ FunctorClosure
G ∈ SigEnv = SigId fin→ Int

(SE ,TE ,VE) or E ∈ Env = StrEnv × TyEnv ×ValEnv
(SI ,TI ,VI) or I ∈ Int = StrInt× TyInt×ValInt

mem ∈ Mem = Addr fin→ Val
ens ∈ ExNameSet = Fin(ExName)

e ∈ ExVal = ExName ∪ (ExName×Val)
(strid : I, strexp, B) ∈ FunctorClosure = (StrId× Int)× StrExp× Basis

SE ∈ StrEnv = StrId fin→ Env
TE ∈ TyEnv = TyCon fin→ ValEnv
VE ∈ ValEnv = VId fin→ Val× IdStatus
SI ∈ StrInt = StrId fin→ Int
TI ∈ TyInt = TyCon fin→ ValInt
VI ∈ ValInt = VId fin→ IdStatus

v ∈ Val = {:=} ∪ SVal ∪ BasVal ∪VId
∪ (VId×Val) ∪ ExVal
∪Record ∪Addr ∪ FcnClosure

r ∈ Record = Lab fin→ Val
(match, E,VE) ∈ FcnClosure = Match× Env ×ValEnv

en ∈ ExName (exception names)
a ∈ Addr (addresses)

sv ∈ SVal (special values)
b ∈ BasVal (basic values)

Table 45: MTHM dynamic semantic objects

• We allow compound metavariables to range over the disjoint union of
semantic objects; for example, B/p ranges over Basis ∪ Pack.

• In many cases, the same names are used for static and dynamic semantic
objects; for example, E for environments. In this section, such names refer
to dynamic semantic objects unless the subscript (·)STAT is used.

Table 46: MTHM notation and conventions for the dynamic semantics

60

↓: Basis× Intf → Basis
(F,G, E) ↓ (IP , F ′, G′, E′,EP) = (F ↓ F ′, inter(G′), E ↓ inter(E′))

↓: FunEnv × FunEnvSTAT → FunEnv
F ↓ F ′ = {funid 7→ F (funid) ; funid ∈ dom(F) ∩ dom(F ′)}

↓: Env × Int → Env
defined in MTHM §7.2

inter : SigEnvSTAT → SigEnv
inter(G) = {sigid 7→ inter(Σ) ; G(sigid) = Σ}

inter : SigSTAT → Int
inter((T)E) = inter(E)

inter : EnvSTAT → Int
inter(SE ,TE ,VE) = inter(SE), inter(TE), inter(VE)

inter : StrEnvSTAT → StrInt
inter(SE) = {strid 7→ inter(E) ; SE (strid) = E}

inter : TyEnvSTAT → TyInt
inter(TE) = {tycon 7→ inter(VE) ; TE (tycon) = (θ,VE)}

inter : ValEnvSTAT → ValInt
inter(VE) = {vid 7→ is ; VE (vid) = (σ, is)}

Table 47: MTHM (· ↓ ·) and inter(·)

61

I.4.1 Programs ` prog ⇒ res

({}, {}), {} ` assm ⇒ UE , s

` assm ⇒ term (108)

({}, {}), {} ` assm ⇒ p, s

` assm ⇒ raise (109)

I.4.2 Assemblies s,UE ` assm ⇒ UE ′/p, s′

s,UE ` · ⇒ UE , s (110)

dom(mem of s) ∩ dom(mem of s0) = ∅
(ens of s) ∩ (ens of s0) = ∅

s + s0,UE + {basis 7→ B0} ` assm ⇒ UE ′, s′

s,UE ` basis : intf , assm ⇒ UE ′, s′ (111)

Rule 111: The initial dynamic basis B0 is specified in The Definition Ap-
pendix D. Its associated state is s0. The side conditions can always be satisfied
by changing addresses and exception names in B0.

dom(mem of s) ∩ dom(mem of s0) = ∅
(ens of s) ∩ (ens of s0) = ∅

s + s0,UE + {basis 7→ B0} ` assm ⇒ p, s′

s,UE ` basis : intf , assm ⇒ p, s′ (112)

unite = require unitid1 · · · unitidn in impl
s,UE ` impl ⇒ B, s′ s′,UE + {unitid 7→ B} ` assm ⇒ UE ′, s′′

s,UE ` unitid : intf = unite, assm ⇒ UE ′, s′′ (113)

unite = require unitid1 · · · unitidn in impl
s,UE ` impl ⇒ p, s′

s,UE ` unitid : intf = unite, assm ⇒ p, s′ (114)

unite = require unitid1 · · · unitidn in impl
s,UE ` impl ⇒ B, s′ s′,UE + {unitid 7→ B} ` assm ⇒ p, s′′

s,UE ` unitid : intf = unite, assm ⇒ p, s′′ (115)

62

I.4.3 Unit Implementations s,UE ` impl ⇒ B/p, s′

UE ` open unitid1 · · · unitidn ⇒ B
s,B ` topdec ⇒ B′, s′

s,UE ` open unitid1 · · · unitidn in topdec ⇒ B′, s′ (116)

UE ` open unitid1 · · · unitidn ⇒ B
s,B ` topdec ⇒ p, s′

s,UE ` open unitid1 · · · unitidn in topdec ⇒ p, s′ (117)

s,UE ` impl ⇒ B, s′

s,UE ` impl : intf ⇒ B ↓ intf , s′ (118)

s,UE ` impl ⇒ p, s′

s,UE ` impl : intf ⇒ p, s′ (119)

I.4.4 Basis Creation UE ` open unitid1 · · · unitidn ⇒ B

B1 = UE (unitid1) · · · Bn = UE (unitidn)

UE ` open unitid1 · · · unitidn ⇒ B1 + · · ·+ Bn (120)

63

